Пробивает свечу зажигания на одном цилиндре — что делать?

Пробивает свечу зажигания на одном цилиндре — что делать?

Это деталь двигателя внутреннего сгорания, ввертываемая в головку блока, предназначенная для воспламенения воздушно-топливной смеси посредством высоковольтного электрического разряда. Это известно многим. Да, бывают разные (по размеру, калильному числу и прочим характеристикам) свечи – но не будем об этом.

Однако, не все знают, что свечи начинают работать нестабильно (вследствие их пробоя), когда увеличивается давление в камере сгорания. Это когда при подаче напряжения на свечу искра получается нестабильной, слабой, а то и вовсе отсутствует. Возникает вопрос – почему? Вот об этом пойдет речь в данной статье.

Итак, к примеру, есть свеча. Проверяем ее «на искру» (т.е. вывертываем из двигателя, подсоединяем к высоковольтному проводу и замыкаем корпус на массу; при этом давление воздуха, в котором находятся электроды свечи, равно атмосферному, т.е. давление — низкое ) — вроде, все нормально.

Искра наблюдается довольно мощная, слышно характерное потрескивание. Но вот, будучи ввернутой в свое рабочее место, она иногда не работает как полагается, в результате чего дивгатель начинает «троить» (т.е. происходят пропуски зажигания, что ведет к снижению максимальной мощности двигателя, а также к перерасходу топлива).

Дело в том, что при этом электрический разряд происходит уже не путем пробоя промежутка между электродами свечи, а либо через ее изолятор, либо (что чаще) по поверхности.

Что происходит, когда свеча зажигания двигателя, в процессе его работы, постепенно покрывается черным нагаром? Когда на ее изоляторе образуются места с пониженным сопротивлением? Очевидно, общее сопротивление, необходимое для перекрытия свечи зажигания по поверхности внутренней части ее изолятора, снижается. Соответственно, снижается и напряжение перекрытия. Свеча начинает работать плохо, искра становится слабой, красноватой.

Но как только оно становится меньшим, чем напряжение пробоя газового промежутка (между электродами свечи), вместо его пробоя происходит перекрытие свечи, т.е. электрический разряд начинает осуществляться по поверхности ее изолятора.

Самое интересное состоит еще и в том, что до некоторых пор, пока мест с пониженным электрическим сопротивлением (например, где присутствуют частицы нагара) не так много, снижение работоспособности свечи зажигания не столь заметно, кое-какая искра все же есть, двигатель худо-бедно, но работает.

Дело в том, что увеличение размера областей изолятора свечи, обладающих пониженным электрическим сопротивлением, эквивалентно снижению расстояния между электродами, т.е. пробивного (точнее, перекрываемого) расстояния, что ведет к снижению пробивного напряжения. Однако, эта зависимость довольно слабая: снижение пробивного напряжение осуществляется весьма медленно по мере уменьшения расстояния между электродами (т.е. по мере, например, накопления нагара на изоляторе свечи).

Поэтому до поры до времени свеча не обнаруживает признаков неисправности и может работать вполне сносно. Но когда нагара ( или иных областей с пониженным электросопротивлением ) на поверхности изолятора свечи появляется уже много, напряжение перекрытия по ней уменьшается настолько, что его уже не хватает для нормального пробоя промежутка между электродами. И получается, что поверхность изолятора начинает шунтировать искровой промежуток, что иногда можно выявить на практике. Соответственно, искра ослабевает, а затем и вовсе исчезает.

В дальнейшем, при когда все больше областей изолятора снижают свое электрическое сопротивление, не происходит даже перекрытия. При этом по поверхности изолятора, при подаче напряжения на электроды свечи, может протекать ток БЕЗ ПРОБОЯ (без перекрытия). Соответственно, никакого разряда, даже по поверхности, обнаружить уже не удастся. Искры, конечно, уже не будет ни при каких условиях. Свеча становится полностью неработоспособной.

Однако, здесь происходит конкуренция: напряжения перекрытия по поверхности изолятора свечи и напряжения пробоя промежутка между электродами . С ростом давления растут обе величины; и если первое растет медленнее (как правило, это так), то при некотором давлении искра между электродами наблюдаться не будет. В противоположном случае — процесс перекрытия не будет реализован, искра между электродами будет присутствовать.

Кроме того , есть еще внутреннее сопротивление изолятора (той его части, которая облегает центральный электрод свечи зажигания). Оно не слишком сильно зависит от давления, но также, как и поверхность изолятора, шунтирует искровой промежуток. Поэтому ясно, что при повышении давления, начиная с некоторой его величины, пробой будет происходить внутри изолятора.

В самом деле: ведь внутреннее сопротивление изолятора практически не изменилось, а для искрового промежутка и поверхности изолятора — выросло.

В этом и состоит причина того, что, начиная с некоторой величины давления газа, в котором находится рабочая часть свечи зажигания, при подаче высокого напряжения искра между ее электродами исчезает. Причем, такое закономерно наблюдается и на новых свечах. Конкретные величины соответствующего критического давления зависят лишь от качества изготовления свечи, а также от характера газовой (топливно-воздушной) среды, в которой находится работающая часть свечи.

Скажем, при давлении в 50. 100 атмосфер (если механическая конструкция свечи позволит его выдержать), в силу очень высокого пробивного напряжения топливно-воздушной смеси, искра не будет наблюдаться, вероятно, у любой автомобильной свечи зажигания: пробой будет идти или по поверхности изолятора, или внутри него самого. Впрочем. закон Пашена начинает нарушаться при высоких давлениях; вполне возможно, что при возрастании давления, начиная с некоторого критического, напряжение пробоя искрового промежутка вновь снизится и, следовательно, искра появится.

Ореол на изоляторе свечи зажигания

Что же касается темного ободка (ореола) на наружной поверхности изолятора свечи зажигания, то он, как правило, вовсе не связан с трещинами на нем, с «проникновением газов из камеры сгорания», как можно иной раз прочитать на автомобильных форумах. Некоторые «спецы» даже советуют менять свечи зажигания, как только появился такой ободок. Смешно, но это вовсю, на полном серьезе, обсуждается «знатоками». Которые потом «раскручивают» своих клиентов на замену свеч, а также создают впечатление о своей квалификации.

На самом же деле, причина появления ореола банальная. В процессе работы свечи зажигания ее наружная часть (изолятор) электризуется, т.е. на ней появляются электрические заряды, причем высокой величины. Это приводит к тому, что находящиеся в подкапотном пространстве частички пыли, масла и т.п., ионизируясь, в свою очередь, притягиваются к изолятору. И, так как последний при работе двигателя нагревается достаточно сильно, прикипают и остаются там в твердом коксообразном состоянии. Кстати, подобный эффект используется в электроочистке газов. Так что ничего такого парадоксального здесь нет.

И вот для того, чтобы образующийся ореол, благодаря своему пониженному, по сравнению с фарфором изолятора, электрическому сопротивлению, не мешал ( посредством шунтирования электроискрового промежутка между электродами свечи ) процессу искрообразования, на свечу и надевается специальный колпачок ( обычно черного цвета ), закрывающий достаточную длину изолятора, где ореол образовываться не будет. Поэтому наличие ореола практически абсолютно не мешает нормальной работе свечи (о чем, кстати, сообщают и производители свеч зажигания), свидетельствуя, разве что, о ее возрасте и/или об интенсивной ее эксплуатации. А также о том, что в подкапотное пространство попадают пары масла, частицы пыли или еще чего.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Что будем искать? Например,Как выбрать незамерзайку

Мы в социальных сетях