Как увеличить ход поршня

Вот отрыл хорошую статейку…

Двигатели с рабочим объемом более 1600 куб. см

Одним из путей форсировки двигателя является увеличение его рабочего объема. В этой статье мы опишем большинство нюансов, связанных с этой операцией, применительно к двигателям автомобилей ВАЗ.

Когда экономически выгодно проводить увеличение объема двигателя? Лучше всего это делать, когда износ цилиндров минимален или, наоборот, требует ремонта с переходом на ремонтный диаметр. При минимальном износе цилиндров можно, подобрав поршни, не переходить на ремонтный размер цилиндров. Так же существует возможность использования тех поршней, которые были установлены на двигателе до его переделки, при условии минимального износа и зазоре с цилиндром не более 0,05 мм, их необходимо только доработать, как описано ниже.

Если износ цилиндро-поршневой группы значителен и двигатель требует ремонта с расточкой в следующий ремонтный размер, экономически целесообразно совместить ремонт с увеличением рабочего объема.

При удовлетворительном состоянии цилиндро-поршневой группы увеличение объема проводить не выгодно. Для ремонта с расточкой в следующий ремонтный размер еще рано, а точно подобрать поршни уже не получится из-за износа цилиндров. Единственный выход, если позволяет износ цилиндров — это хонинговка цилиндров под поршни большего класса.

Начнем с переднеприводных моделей ВАЗа. Двигатель 2108 (1300 куб.см) в этой статье затрагиваться не будет, так как увеличение его рабочего объема хотя и возможно, но не получило широкого распространения ввиду экономический нецелесообразности. Скажем лишь, что рабочий объем этого двигателя можно увеличить за счет установки коленчатых валов с увеличенным ходом поршня (74,8 и 78,0 мм) и увеличения диаметра цилиндра до 79 мм. Максимально возможный рабочий объем данного двигателя 1530 куб. см (геометрия 79Х78 мм).

Двигатель 21083 является продолжением ряда двигателей 2108. Увеличив диаметр цилиндра при неизменном межцилиндровом расстоянии, конструкторам ВАЗа пришлось отказаться от рубашки охлаждения между стенками соседних цилиндров. В итоге это сказалось на ресурсе, так как более напряженный тепловой режим работы цилиндро-поршневой группы требовал более строгого соблюдения всех норм и допусков для её деталей. Плюс к этому блок цилиндров стал более теплонагруженным.

На данный момент АвтоВАЗ прекратил производство двигателей обьемом 1500 куб. см. Им на замену пришли двигатели с увеличенной на 2,3 мм высотой блока и коленчатым валом с ходом 75,6 мм. Такие двигатели, обьемом 1600 куб.см существуют как в «простом» варианте – со стандартным шатуном 2110 (121 мм), так и в варианте «приора» с цилиндро-поршневой группой TRW.

Данный материал был написан в 2000 году, когда еще небыло серийных двигателей объемом 1,6 л. Сейчас материал отредактирован в соответствии с духом времени 🙂

Увеличение рабочего объема двигателей семейства 21083 до 1600 куб. см.

Наиболее распространенным вариантом увеличения рабочего объема до 1600 куб. см является увеличение хода поршня до 74,8 мм либо 75,6 мм (стандартный — 71 мм) путем замены коленчатого вала. Эта операция почти во всем схожа с ремонтом двигателя: снятие, разборка, измерение и дефектовка деталей, при необходимости — расточка цилиндров в следующий ремонтный размер, полная динамическая балансировка нового коленчатого вала с маховиком и корзиной сцепления и так далее. Но на двух операциях следует остановиться подробнее. При увеличении хода поршня, не могут быть использованы стандартные поршни, так как в ВМТ они выйдут из блока на 1,4 мм (именно на 1,4 мм, а не на 1,9, как следует из расчетов, так как в стандартном двигателе 21083 существует "недоход" поршня на 0,5 мм). При ходе поршня 75,6 мм данная величина равна 1,8 мм. Эта проблема решается несколькими путями.

Первый способ — использование специальных горячештампованных (так называемых "кованых") поршней, которые изготовлены специально для данного коленчатого вала. Существует несколько фирм, занимающихся изготовлением таких поршней. Легче всего найти такие поршни диаметром 82,0, 82,4, 82,5 (тонкие кольца 1,2/1,5/2,0 VW), 84,0 мм различных классов. "Кованые" поршни бывают как обычной формы, так и Т-образные. Последние значительно легче по массе. Обычно такие поршни не имеют инваровых вставок, поэтому рекомендуемый зазор для них составляет 0,06 — 0,08 мм (как в двигателях "классических" ВАЗов). Цена на эти поршни колеблется в пределах от $130 до $350 за комплект. Средняя цена за комплект таких поршней (82,0-82,4 мм, со смещенным пальцем, ход 74,8 мм) составляет 3000-4000 рублей. К недостаткам данного способа следует отнести лишь относительно высокую стоимость. Второй способ подразумевает использование стандартных поршней, прошедших доработку. Путем механической обработки с днища поршня снимаются требуемые 1,4 мм (1,8 мм при ходе 75,6 мм). Вместе с данной операцией имеет смысл углубить на те же 1,4 — 1,7 мм циковки под клапаны. К минусам данного способа следует отнести следующие факторы:
если состояние цилиндро-поршневой группы двигателя 21083 позволяет использовать те поршни, которые были установлены на двигателе до его переделки, то возникает необходимость выпрессовывать поршневой палец. В ходе данной операции существует вероятность повреждения поршня с невозможностью его дальнейшего использования. Данный фактор отсутствует в двигателях «десятого» семейства, так как в них применен "плавающий" поршневой палец.
увеличение степени сжатия (более 10,5) из-за уменьшения объема камеры сгорания в поршне. Возможна корректировка степени сжатия путем снятия более чем 1,4 мм с днища поршня. Либо увеличение объема камеры сгорания в ГБЦ.

Одним из вариантов данного способа является использование поршней 21213. Данная мера позволяет без значительного ущерба для прочности поршня снимать с его днища большое количество металла, так как поршень 21213 имеет значительно более толстое днище, чем поршень 21083. Это позволяет скорректировать степень сжатия, если это необходимо, даже до значений приемлемых для турбированных двигателей. При съеме металла необходимо оставлять максимально возможный огневой пояс поршня для данной конфигурации двигателя. Огневой пояс – высота от днища поршя до канавки первого компрессионного кольца. Как и в случае с поршнями 21083, необходимо сделать циковки под клапаны. В двигателе 21083 потребуется замена шатунов на 2110, так как в поршнях 21213 используется "плавающий" поршневой палец.

Третий способ — применение укороченных шатунов. На первый взгляд — самый выгодный, так как позволяет использовать стандартные поршни. Этот вариант является наименее желательным, настоятельно рекумендуем не пользоваться им. Увеличение рабочего объема двигателей 21083 более 1600 куб. см.

Увеличение рабочего объема двигателей 21083 более 1600 куб. см.

При определенных обстоятельствах или при целенаправленном получении максимального рабочего объема, возможна расточка стандартого блока 21083 до диаметра цилиндров 84,0 мм (кольца FIAT). Если все работы проделаны на должном техническом уровне, возможно увеличение рабочего объема двигателя 21083 до 1773 куб. см (84,0х80 мм). Можно так же увеличить диаметр цилиндра до 84,40 (кольца FIAT) или до 84,50 (кольца BMW). Не так часто, но все-же случается, что при расточке цилиндров до 84+ мм открываются дефекты литья. Если это случилось – вы однако лузер, ибо встречается такое редко. В основном нормальные блоки, расточенные до 84+ мм живут вполне полноценной жизнью с обычным ресурсом. Следует заметить, что при построении двигателей такого объема, очень важно контролировать геометрическую степень сжатия, так как основной проблемой в данных двигателях является детонация, которая возникает при завышенной степени сжатия и неправильной регулировке угла опережения зажигания.

Помимо коленчатых валов с ходом поршня 74,8 и 75,6 мм, существуют еще коленчатые валы с ходом поршня 78,0 мм и 80,0 мм. При использовании этих коленчатых валов можно получить следующие варианты геометрии цилиндро-поршневой группы:

82Х78 мм (рабочий объем до 1680 куб. см)

82Х80 мм (рабочий объем до 1720 куб. см)

84Х78 мм (рабочий объем до 1750 куб. см)

84Х80 мм (рабочий объем до 1798 куб. см)

С данными коленчатыми валами используются только "кованые" поршни рассчитанные на ход поршня 78 и 80 мм соответственно.

Объём камеры сгорания в известной степени указывает на количество вводимой теплоты. Теплотворная способность поступающего заряда в бензиновом двигателе определена соотношением воздуха и топлива, близким к стехиометрическому. В дизель подаётся чистый воздух, а подача топлива ограничена степенью неполноты сгорания, при которой в отработавших газах появляется дым. Поэтому связь количества вводимой теплоты с объёмом камеры сгорания достаточно очевидна [2].

Наименьшим отношением поверхности к заданному объёму обладает сфера. Тепло в окружающее пространство отводится поверхностью, поэтому масса, имеющая форму шара, охлаждается в наименьшей степени. Эти очевидные соотношения учитываются при проектировании камеры сгорания. Следует, однако, иметь в виду геометрическое подобие деталей двигателей разных размеров. Как известно, объём сферы равен 4/3∙π∙R 3 , а её поверхность — 4∙π∙R 2 , и, таким образом, объём с ростом диаметра увеличивается быстрее, чем поверхность, и, следовательно, сфера большего диаметра будет иметь меньшую величину отношения поверхности к объёму. Если поверхности сферы разного диаметра имеют одинаковые перепады температур и одинаковые коэффициенты теплоотдачи α , то большая сфера будет охлаждаться медленнее.

Двигатели геометрически подобны, когда они имеют одинаковую конструкцию, но отличаются размерами. Если первый двигатель имеет диаметр цилиндра, например, равный единице, а у второго двигателя он в 2 раза больше, то все линейные размеры второго двигателя будут в 2 раза, поверхности — в 4 раза, а объёмы — в 8 раз больше, чем у первого двигателя. Полного геометрического подобия достичь, однако, не удаётся, так как размеры, например, свечей зажигания и топливных форсунок одинаковы у двигателей с разными размерами диаметра цилиндра.

Из геометрического подобия можно сделать тот вывод, что больший по размерам цилиндр имеет и более приемлемое отношение поверхности к объёму, поэтому его тепловые потери при охлаждении поверхности в одинаковых условиях будут меньше.

При определении мощности нужно, однако, учитывать некоторые ограничивающие факторы. Мощность двигателя зависит не только от размеров, т. е. объёма цилиндров двигателя, но и от частоты его вращения, а также среднего эффективного давления. Частота вращения двигателя ограничена максимальной средней скоростью поршня, массой и совершенством конструкции кривошипно-шатунного механизма. Максимальные средние скорости поршня бензиновых двигателей лежат в пределах 10—22 м/с. У двигателей легковых автомобилей максимальное значение средней скорости поршня достигает 15 м/с, а значения величины среднего эффективного давления при полной нагрузке близки к 1 МПа.

Рабочий объём двигателя и его размеры определяют не только геометрические факторы. Например, толщина стенок задана технологией, а не нагрузкой на них. Теплопередача через стенки зависит не от их толщины, а от теплопроводности их материала, коэффициентов теплоотдачи на поверхностях стенок, перепада температур и т. д. Колебания давления газа в трубопроводах распространяются со скоростью звука независимо от размеров двигателя, зазоры в подшипниках определяются свойствами масляной пленки и т. д. Некоторые выводы относительно влияния геометрических размеров цилиндров, тем не менее, необходимо сделать.

Преимущества и недостатки цилиндра с большим рабочим объёмом

Цилиндр большего рабочего объёма имеет меньшие относительные потери теплоты в стенки. Это хорошо подтверждается примерами стационарных дизелей с большими рабочими объёмами цилиндров, которые имеют очень низкие удельные расходы топлива. В отношении легковых автомобилей это положение, однако, подтверждается не всегда.

Анализ уравнения мощности двигателя показывает, что наибольшая мощность двигателя может быть достигнута при небольшой величине хода поршня.

Средняя скорость поршня может быть вычислена как

где S — ход поршня, м; n — частота вращения, мин -1 .

При ограничении средней скорости поршня Cп частота вращения может быть тем выше, чем меньше ход поршня. Уравнение мощности четырёхтактного двигателя имеет вид

где Vh — объём двигателя, дм 3 ; n — частота вращения, мин -1 ; pe — среднее эффективное давление, МПа.

Следовательно, мощность двигателя прямо пропорциональна частоте его вращения и рабочему объёму. Тем самым к двигателю одновременно предъявляются противоположные требования — большой рабочий объём цилиндра и короткий ход. Компромиссное решение состоит в применении большего числа цилиндров.

Наиболее предпочтительный рабочий объём одного цилиндра высокооборотного бензинового двигателя составляет 300—500 см 3 . Двигатель с малым числом таких цилиндров плохо уравновешен, а с большим — имеет значительные механические потери и обладает поэтому повышенными удельными расходами топлива. Восьмицилиндровый двигатель рабочим объемом 3000 см 3 имеет меньший удельный расход топлива, чем двенадцатицилиндровый с таким же рабочим объёмом.

Для достижения малого расхода топлива целесообразно применять двигатели с малым числом цилиндров. Однако одноцилиндровый двигатель с большим рабочим объёмом не находит применения в автомобилях, поскольку его относительная масса велика, а уравновешивание возможно лишь при использовании специальных механизмов, что ведёт к дополнительному увеличению его массы, размеров и стоимости. Кроме того, большая неравномерность крутящего момента одноцилиндрового двигателя неприемлема для трансмиссий автомобиля.

Наименьшее число цилиндров у современного автомобильного двигателя равно двум. Такие двигатели с успехом применяют в автомобилях особо малого класса («Ситроен 2CV», «Фиат 126»). Сточки зрения уравновешенности, следующим в ряду целесообразного применения стоит четырёхцилиндровый двигатель, однако в настоящее время начинают применять и трёхцилиндровые двигатели с небольшим рабочим объёмом цилиндров, поскольку они позволяют получить малые расходы топлива. Кроме того, меньшее число цилиндров упрощает и удешевляет вспомогательное оборудование двигателя, так как сокращается число свечей зажигания, форсунок, плунжерных пар топливного насоса высокого давления. При поперечном расположении в автомобиле такой двигатель имеет меньшую длину и не ограничивает поворот управляемых колёс.

Трёхцилиндровый двигатель позволяет использовать унифицированные с четырёхцилиндровым основные детали: гильзу цилиндра, поршневой комплект, шатунный комплект, клапанный механизм. Такое же решение возможно и для пятицилиндрового двигателя, что позволяет при необходимости увеличения мощностного ряда вверх от базового четырёхцилиндрового двигателя избежать перехода на более длинный шестицилиндровый.

В дизелях помимо уменьшения потерь теплоты при сгорании большой рабочий объёмом цилиндра даёт возможность получить более компактную камеру сгорания, в которой при умеренных степенях сжатия создаются более высокие температуры к моменту впрыска топлива. У цилиндра с большим рабочим объёмом можно использовать форсунки с большим числом сопловых отверстий, обладающих меньшей чувствительностью к нагарообразованию.

Отношение хода поршня к диаметру цилиндра

Частное от деления величины хода поршня S на величину диаметра цилиндра D представляет собой широко употребляемое значение отношения S/D . Точка зрения на величину хода поршня в течение развития двигателестроения менялась.

На начальном этапе автомобильного двигателестроения действовала так называемая налоговая формула, на основе которой взимаемый налог на мощность двигателя рассчитывался с учетом числа и диаметра D его цилиндров. Классификация двигателей осуществлялась также в соответствии с этой формулой. Поэтому отдавалось предпочтение двигателям с большой величиной хода поршня с тем, чтобы увеличить мощность двигателя в рамках данной налоговой категории. Мощность двигателя росла, но увеличение частоты вращения было ограничено допустимой средней скоростью поршня. Поскольку механизм газораспределения двигателя в этот период не был рассчитан на высокую оборотность, то ограничение частоты вращения скоростью поршня не имело значения.

Как только описанная налоговая формула была упразднена, и классификация двигателей стада проводится в соответствии с рабочим объёмом цилиндра, ход поршня начал резко уменьшаться, что позволило увеличить частоту вращения и, тем самым, мощность двигателя. В цилиндрах большего диаметра стало возможным применение клапанов больших размеров. Поэтому были созданы короткоходные двигатели с отношением S/D , достигающим 0,5. Усовершенствование механизма газораспределения, особенно при использовании четырех клапанов в цилиндре, позволило довести номинальную частоту вращения двигателя до 10000 мин -1 и более, вследствие чего удельная мощность быстро возросла.

В настоящее время большое внимание уделяется уменьшению расхода топлива. Проведённые с этой целью исследования влияния S/D показали, что короткоходные двигатели обладают повышенным удельным расходом топлива. Это вызвано большой поверхностью камеры сгорания, а также снижением механического КПД двигателя из-за относительно большой величины поступательно движущихся масс деталей шатунно-поршневого комплекта и роста потерь на приводы вспомогательного оборудования. При очень коротком ходе нужно удлинять шатун с тем, чтобы нижняя часть юбки поршня не задевалась противовесами коленчатого вала. Масса поршня при уменьшении его хода мало уменьшилась и при использовании выемок и вырезов на юбке поршня. Для снижения выброса токсичных веществ в отработавших газах целесообразнее применять двигатели с компактной камерой сгорания и с более длинным ходом поршня. Поэтому в настоящее время от двигателей с очень низким отношением S/D отказываются.

Рис. 1
Влияние отношения хода поршня S к диаметру цилиндра D на среднее эффективное давление pe гоночных автомобилей

Зависимость среднего эффективного давления от отношения S/D у лучших гоночных двигателей, где четко видно снижение pe при малых отношениях S/D , приведена на рис. 1. В настоящее время более выгодным считается отношение S/D , равное или несколько большее единицы. Хотя при коротком ходе поршня отношение поверхности цилиндра к его рабочему объёму при положении поршня в НМТ меньше, чем у длинноходных двигателей, нижняя зона цилиндра не так важна для отвода теплоты, поскольку температура газов уже заметно падает.

Длинноходный двигатель имеет более выгодное отношение охлаждаемой поверхности к объёму камеры сгорания при положении поршня в ВМТ, что более важно, так как в этот период цикла температура газов, определяющая потери теплоты, наиболее высока. Сокращение поверхности теплоотдачи в этой фазе процесса расширения уменьшает тепловые потери и улучшает индикаторный КПД двигателя.

Читайте также

Вы поворачиваете ключ зажигания — и двигатель Вашего автомобиля разрывает ударная волна. Это звучит катастрофой, но роторный двигатель на ударной волне может сделать автомобили гораздо более эффективными.

Наибольшие механические потери в двигателе вызваны трением поршня в цилиндре. Подшипники находятся в более выгодных условиях.

Сноски

  1. ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. — М.: Машиностроение, 1987. — 320 с.: ил.//Стр. 186 — 192 (книга есть в библиотеке сайта). – Прим. icarbio.ru
  2. ↺ Узнать больше о эффективном КПД. – Прим. icarbio.ru

Комментарии

Добрый день. Я разработал 4х цилиндровый 4х тактник,но по принципу работы одноцилиндрового двс,т.е. все четыре цилиндра работают одновременно и от одной камеры сгорания,к тому же регулируемой.Комментарии или заинтересованность к моей разработке присылать на электронку. Разработка находится на стадии патентования. Спасибо.

Хорошая статья. Почерпнул для себя немного новой информации.

Весьма распространенной процедурой по улучшению характеристик автомобиля, является увеличение рабочего объема двигателя, с целью его форсирования. Для этого существует несколько вариантов:

  • можно заменить коленчатый вал, установив другой, с большим ходом;
  • расточить блок цилиндров, тем самым увеличив их диаметр;
  • сделав то и другое одновременно.

Целесообразней делать увеличение объема двигателя тогда, когда износ блока требует перехода на ремонтный диаметр. Тем самым можно убить двух зайцев — и характеристики улучшить, и ремонт произвести.

Замена коленчатого вала

Верхняя и нижняя мертвые точки поршня определяют рабочий объем цилиндра. Если заменить штатный коленвал на другой, с большим ходом поршня — получим увеличение объема. Коленвал, для двигателей ВАЗ семейства 21083, бывает с ходом поршня:

  1. 60,6;
  2. 71;
  3. 74,8;
  4. 75,6;
  5. 78;
  6. 80;
  7. 84.

Стандартный ход поршня на двигателе ВАЗ 21083 составляет 71 мм. Самый распространенный способ увеличить рабочий объем до 1600 см3 — это установка коленвала с ходом 74,8 либо 75,6. Увеличивая ход поршня, так же необходимо заменить, либо существенно доработать имеющиеся. Здесь тоже существует несколько способов решения проблемы.

Можно установить поршни со смещенным отверстием под палец, либо же использовать более короткие шатуны. Наиболее распространены варианты с установкой специальных кованых поршней под выбранный коленвал, либо снятие излишков металла с имеющихся цилиндров. Из минусов можно отметить быстрый износ шатунно-поршневой группы. Происходит это в силу того, что из-за увеличения хода поршней меняются углы работы шатуна, а значит, возрастает боковое давление на стенки цилиндра.

Еще стоит добавить, что на больших оборотах, штатные впускная и выпускная системы, не смогут справляться в полной мере. Наполнение цилиндров станет затруднительным, что неизбежно повлечет за собой потерю мощности. Данный недостаток с легкостью можно отнести и к следующему способу увеличения рабочего объема двигателя.

Расточка блока цилиндров

Это вариант подразумевает расширение диаметра цилиндров, и установку поршней большего диаметра, что в свою очередь так же увеличивает рабочий объем. Любой капитальный ремонт, своего рода небольшой тюнинг, в сторону увеличения объема. При правильном подходе, и руках растущих из нужного места, их можно расточить до 84 мм. Дальнейшая расточка опасна, могут выйти дефекты литья, и тогда можно отправляться за новым блоком. Но здесь тоже есть ограничения и минусы.

Значительное уменьшение толщины стенок цилиндров, в любом случае приведет пусть к небольшому, но снижению ресурса блока цилиндров. Так же увеличивается термонагрузка, проще говоря, тонкие стенки будут нагреваться куда быстрее.

Расточка блока и замена коленвала

Это вариант включает в себя оба перечисленных выше, и позволяет произвести максимальное увеличение рабочего объема двигателя. К примеру, расточка до диаметра 84 мм, с установкой коленвала с ходом 80 мм, увеличит объем двигателя до 1798 см3. В данном случае так же понадобится установка кованых поршней.

Какой бы вариант вы для себя не избрали, важно помнить то, что доработка двигателя дело весьма серьезное и кропотливое. Лучше всего поручить дело профессионалам, которые на этом собаку съели. Ведь без необходимых навыков и специального оборудования, тюнинг рискует превратиться в муку и напрасную трату денег, времени и сил.

Только тщательно взвесив все за и против, стоит отправляться в магазин за запчастями. Как правило, расходы на форсирование двигателя, включая стоимость запчастей и работы, не приносят владельцу какой-то ощутимой пользы. Прироста мощности вы вряд ли ощутите, как говориться в сиденье вас ваша девятка вжимать все равно не будет.
" alt="">

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Что будем искать? Например,Как выбрать незамерзайку

Мы в социальных сетях