Характеристики датчика температуры охлаждающей жидкости

Нам очень жаль, но запросы, поступившие с вашего IP-адреса, похожи на автоматические. По этой причине мы вынуждены временно заблокировать доступ к сайту.

Чтобы продолжить, пожалуйста, введите символы с картинки в поле ввода и нажмите «Отправить».

В вашем браузере отключены файлы cookies. Мы не сможем запомнить вас и правильно идентифицировать в дальнейшем. Чтобы включить cookies, воспользуйтесь советами на этой странице.

Почему так случилось?

Возможно, автоматические запросы принадлежат не вам, а другому пользователю, выходящему в сеть с одного с вами IP-адреса. Вам необходимо один раз ввести символы в форму, после чего мы запомним вас и сможем отличать от других пользователей, выходящих с данного IP. В этом случае страница с капчей не будет беспокоить вас довольно долго.

Возможно, в вашем браузере установлены дополнения, которые могут задавать автоматические запросы к поиску. В этом случае рекомендуем вам отключить их.

Также возможно, что ваш компьютер заражен вирусной программой, использующей его для сбора информации. Может быть, вам стоит проверить систему на наличие вирусов.

Если у вас возникли проблемы или вы хотите задать вопрос нашей службе поддержки, пожалуйста, воспользуйтесь формой обратной связи.

Преамбула или «откуда выросли ноги».

Я сделал свой собственный блок для управления вентиляторами охлаждения двигателя – дабы поддерживать на нужном уровне температуру двигателя. Понятно, что он в качестве исходной информации этот блок должен знать эту самую температуру. Отсюда и возник вопрос – а откуда ее брать. У меня Патриот 2007г издания, блок управления двигателем – Микас-11. В этом варианте штатно на корпусе термостата стоят два датчика температуры – двухконтактный, сигнал от которого идет в электронную систему управления двигателем (ЭСУД) и одноконтактный – от него работает показометр температуры на приборной панели. Использовать ни тот, ни другой мне не хотелось. Датчик для ЭСУД не хотелось использовать дабы не вносить своими ручонками погрешности в работу ЭСУД. Датчик показометра не хотелось использовать именно по причине его одноконтактности, то есть второй провод от него – это корпус двигателя. А весь мой предыдущий опыт конструирования электроники, работающей с исходными сигналами малого уровня, говорил что при использовании источника глухо сидящего своей сигнальной землей на корпусе, по которому могут течь неконтролируемые большие токи, проблема помех может оказаться плохоразрешимой. Еще одна причина для использования своего отдельного датчика – это желание отслеживать температуру двигателя после выключения зажигания, чтобы вентиляторами сгладить температурный выбег после прекращения циркуляции охлаждающей жидкости в системе. А в этом случае со штатных датчиков после выключения зажигания снимается питающее напряжение.
Итак я решил что у моей системы будет свой собственный датчик температуры. Казалось бы в этом случае он вообще может быть любым. Но мне хотелось чтобы это была более-менее распространенная стандартная деталь, дабы при выходе из строя ее можно было бы заменить купленной в магазине. Или даже если я применю что-то свое нестандартное, то такая замена на стандартную должна быть возможной (хотя бы на какое-то время) без всякого «напилинга», пусть с возможным некоторым ухудшением характеристик. И я обратил свой взор на датчики температуры, применяемые в ЭСУД отечественных двигателей. Все они конструктивно выполнены двухконтактными, электрически изолированными от корпуса – что мне и надо было.

С точки зрения электрической типов датчиков всего два – это полупроводниковая микросхема, изображающая из себя стабилитрон с положительным (и постоянным!) температурным коэффициентом, и терморезистор. Первый из этих типов называется 19.3828 или 42.3828 или 405226 в зависимости от производителя. Выглядит так:

Присоединительная резьба М12х1.5, разъем прямоугольный с плоскими контактами шириной 3.8мм. Интернет говорит о том что бывают и другие конструктивные варианты исполнения датчика с точно такими же электрическими характеристиками, но в жизни я их не видел.
Терморезистор же могут упаковывать в разные корпуса, отличающиеся разъемами (прямоугольный, более старый, и овальный, более современный) и присоединительной резьбой – метрическая М12х1.5 или коническая дюймовая К3/8” — итого четыре варианта, все (три точно есть) реально существуют (и нафига нужен был такой зоопарк – непонятно). Но наиболее распространенный имеет овальный разъем и резьбу М12х1.5. Маркировка такого датчика – 23.3828, 423.3828 или 405213 в зависимости от производителя. Вот он:

Есть довольно экзотический вариант такого датчика(423.3828) – в полностью пластиковом корпусе. Производит его калужское предприятие «Автотрейд». Производитель утверждает что такой вариант обладает более высоким быстродействием, нежели металлический. Я приложил некоторые усилия и купил пару таких датчиков. Вот:

Что меня интересовало.

Для всех этих двухконтактных датчиков производители косвенным образом нормируют точность в +-2С. Косвенным – потому что нормирован разброс электрических параметров при некоторой температуре, но если этот разброс пересчитать в температуру то и получается +-2С. В скобках замечу что для одноконтактного датчика для показометра (ТМ106-11) этот же параметр получается +-4С.
Но меня интересовал фактический разброс от экземпляра к экземпляру. Понятно что купить ради такого интересу по десятку штук каждого датчика (что было бы правильным на самом деле) кажется сумасшедствием, но по паре я купил.
Что больше интересовало – это быстродействие датчиков. Интерес этот появился через некоторое время после установки системы на автомобиле. При работе на холостом ходу температура гуляет в пределах трубы в 2-3С с периодом порядка 90 секунд. Причина следующая. Датчик установлен в трубе идущей от термостата в радиатор – на самом корпусе термостата для еще одного датчика в моем случае места не нашлось, да и не это главное по-видимому. Более существенно что при повышении температуры вентилятор начинает охлаждать ОЖ в радиаторе и проходит некоторое время, пока эта охлажденная порция ОЖ попадет в двигатель и охладит его, после чего снизится температура и на выходе из движка – лишь только тогда датчик «увидит» снижение температуры и уменьшит обороты вентилятора. А пока датчик не «увидел» снижения температуры – вентилятор продолжает охлаждать радиатор, в результате чего температура ОЖ излишне понижается. Ну и этот процесс весь повторяется. Дело известное в системах автоматического регулирования с обратной связью и в придачу с задержками в петле обратной связи. Известное, но вообще говоря считается не очень правильным иметь процесс регулирования с колебаниями. Понятно что задержек не избежать, но минимизировать их хочется, посему хотелось узнать характеристики датчиков по быстродействию.

Читайте также:  Как убрать скрип ремня генератора

Датчики запитывались через резистор 316 Ом от источника в 5 вольт и подключались ко входу АЦП. Оцифрованный сигнал записывался компьютером и потом в Excel’e полученные данные пересчитывались в температуру.
Датчики погружались в сосуд с водой по начало крепежного фланца. То есть вся резьбовая часть оказывалась в воде, а крепежный шестигранник – на воздухе. Сосудов было два – в одном вода комнатной температуры, в другом горячая. Горячая вода не термостабилизировалась – наливалась из чайника и постепенно остывала. Интерес представлял переходный процесс при переносе датчика из одного сосуда в другой.

На всех графиках по горизонтали шкала в секундах, по вертикали в градусах Цельсия.
Датчики 19.3828 (стабилитрон). Переходный процесс:

Разница в температурных показаниях не превышает 0.4С – но это фактически разрешающая способной моей измерительной аппаратуры для этого датчика. Постоянная времени переходного процесса (усреднено)

21 секунды. Практически одинаковое для обоих экземпляров. Для тех кто не в курсе – это время от начала воздействия «ступенькой» до достижения 63% (если быть точным то до 1 – 1/е) величины этой ступеньки.

Датчики 423.3828 в металлическом корпусе. Терморезистор.

Здесь на устоявшихся режимах температурная разница не превышает 0.2С (разрешение метода для этого типа датчика примерно 0.1С). А вот переходный процесс заметно разный по времени. Для датчика #1 (синяя кривая) постоянная времени составляет 18.3 секунд, для датчика #2 (лиловая кривая) – 27 секунд.

Датчики 423.3828 в пластиковом корпусе. Тут, увы, у меня что-то сглюкнуло и большая часть данных потерялась. Удобоваримая осталась только вот эта часть.

То, что сначала графики идут не из одной температурной точки есть следствие их недостаточного охлаждения на предыдущей стадии эксперимента. А при их нагреве до устоявшегося состояния разница в показываемой температуре, как и в предыдущем случае, не превышает 0.2С. Подсчитанная постоянная времени для датчика #3 (синяя кривая) составляет 22.2 секунд, для датчика #4 (лиловая кривая) – 18.3 секунд.

Сторонник использования одноконтактного датчика (тот что для приборки) Александр kineskop утверждал, что этот одноконтактный датчик гораздо быстрее двухконтактных. Дабы проверить это утвеждение я купил один такой датчик (его тип – ТМ106-11) и испытал его.

Постоянная времени составляет 12.5 секунд. Действительно быстрее реагирует на изменение температуры. Но — абсолютная же погрешность этого конкретного датчика составляет -2С при температуре около 20С и -4С при температуре около 60С. Просто у меня есть достаточно точный образцовый термометр и, поскольку датчик этот я купил один, то решил сравнить его хоть с чем-нибудь.
Для более наглядного сравнения временных характеристик вышеупомянутых датчиков я свел процесс нагревания их в единые координаты. На них нулю температуры соответствует начало нагрева, а единице – максимальная температура нагрева. Масштаб же оси времени сохранен, но начало нагрева сведено в одну точку по времени. Вот что получилось.

Более подробно начальный участок.

Зеленая горизонтальная линия – уровень отсчета для постоянной времени(63%).

Меня заинтересовало почему у терморезисторов в металлическом корпусе такой разброс постоянной времени. Я один из датчиков распилил. И вот что увидел.

На фотке – корпус, пластиковый разъем с зажатым в нем терморезистором, уплотнительное резиновое кольцо и пленка-изолятор. На корпусе терморезистора было очень небольшое количество теплопроводящей пасты (капля) – я её стер в попытке увидеть написанный номинал терморезистора, но на нем никаких надписей не было. Латунное колечко на черном пластике – это отпиленная завальцовка.

Читайте также:  Бьет руль при движении ваз 2114

Это фотка корпуса со вставленным в него уплотнительным кольцом и прозрачной пленкой изолятором. Пленка довольно жесткая и прилегает к стенкам корпуса она плохо. На пленке видны остатки термопасты, они только внутри пленки, между самой пленкой и стенкой корпуса никакой термопасты не было. То есть тепловой контакт между самим терморезистором и наружней стенкой корпуса во-первых плохой и во-вторых сильно зависит от того сколько термопасты положат и как хорошо будет прилегать пленка к корпусу. Вот и причина разброса постоянной времени скорости прогрева терморезистора. Но это еще не все.

На этой фотке я сложил пластиковую вставку с терморезистором и корпус рядом так, чтобы было видно насколько глубоко сидит терморезистор внутри корпуса. И видна полная фигня – терморезистор сидит на половине глубины всего датчика, причем хоть какой-то тепловой контакт он имеет лишь с боковой поверхностью корпуса датчика. То есть тепло от конца датчика должно доползти до середины и потом через плохо прилегающую изоляционную пленку и кое-как нанесенную термопасту уже дойти до собственно чувствительного элемента.
Мне стало совсем любопытно и я распилил датчик с микросхемой, изображающей термозависимый стабилитрон. Это оказалось заметно более трудоемкой задачей. Вот что я увидел.

Датчик температуры охлаждающей жидкости предназначен для измерения температуры охлаждающей жидкости в системе охлаждения двигателя. Датчик включен в систему управления двигателем.

Информация от датчика используется системой управления для корректировки основных параметров работы двигателя в зависимости от теплового состояния:

· частоты вращения коленчатого вала;

· качественного состава топливно-воздушной смеси;

· угла опережения зажигания.

Таким образом, работа датчика температуры охлаждающей жидкости обеспечивает быстрый прогрев двигателя при запуске и поддержание оптимальной его температуры на всех режимах.

В недалеком прошлом датчик температуры охлаждающей жидкости надвигателе внутреннего сгорания был представлен термореле, например, всистеме впрыска K-Jetronic. Применение данного устройства обеспечивало только два режима работы:

1. прогрев двигателя при запуске за счет обогащения топливно-воздушной смеси (при открытом контакте термореле);

2. поддержание номинальной температуры (при закрытом контакте термореле).

В настоящее время датчик температуры охлаждающей жидкости является элементом электронного управления системы охлаждения, с помощью которого осуществляется непрерывный контроль и регулирование температурного режима двигателя. В качестве датчика применяется термистор – резистор, изменяющий сопротивление в зависимости от температуры.

Термистор изготавливается из полупроводниковых материалов (оксид никеля, оксид кобальта), которые характеризуются ростом свободных электронов при увеличении температуры и соответственно уменьшением сопротивления. Термистор помещается в защитный теплопроводный корпус, на котором выполнена крепежная резьба и электрический разъем для соединения.

Термистор имеет отрицательный температурный коэффициент, т.е. его сопротивление уменьшается с ростом температуры. Когда двигатель холодный сопротивление датчика максимально. На датчик подается напряжение порядка 5В, которое уменьшается с изменением сопротивления датчика. По падению напряжения на датчике блок управления двигателем рассчитывает температуру охлаждающей жидкости.

Датчик температуры охлаждающей жидкости ввернут в выпускной патрубок головки блока цилиндров. Новые возможности температурного регулирования открываются с применением двух датчиков температуры охлаждающей жидкости. Один из датчиков устанавливается на выходе из двигателя, другой – на выходе из радиатора.

Необходимая температура охлаждающей жидкости определяется в зависимости от нагрузки двигателя (массе засасываемого воздуха) и частоте вращения коленчатого вала двигателя. По показаниям датчиков определяется характер работывентилятора, степень открытия термостата, включение реле дополнительного насоса охлаждения в системе рециркуляции отработавших газов, реле охлаждения двигателя после остановки.

Датчик детонации


Датчик детонации служит для контроля степени детонации при работе бензинового двигателя внутреннего сгорания. Датчик устанавливается на блоке цилиндров двигателя. Он является важным компонентом системы управления двигателем, т.к. позволяет реализовать максимальную мощность двигателя и обеспечить топливную экономичность. Под степенью детонации понимается часть топливно-воздушной смеси, сгорающая с детонацией. Детонация или правильно детонационное сгорание возникает, когда удаленная от свечи зажигания часть топливно-воздушной смеси вследствие поджатия фронтом пламени нагревается и самовоспламеняется с образованием взрыва. Детонация сопровождается акустическими признаками – металлическим стуком в кривошипно-шатунном механизме.

Причинами детонации являются:

· химический состав топлива (октановое число);

· конструктивные особенности двигателя (степень сжатия, расположение свечей зажигания, форма камеры сгорания и др.);

· условия эксплуатации (состав топливно-воздушной смеси, угол опережения зажигания, нагрузка на двигатель, нагар на деталях камеры сгорания и др.).

Последствием детонационного сгорания выступает повышенная теплоотдача элементов кривошипно-шатунного механизма, сопровождающаяся повышенным износом, поломками и разрушением.

Принцип действия датчика детонации основан на пьезоэффекте. В конструкцию датчика включена пьезоэлектрическая пластина, в которой при возникновении детонации на концах возникает напряжение. Чем больше амплитуда и частота колебаний, тем выше напряжение. Когда напряжение на выходе датчика превышает заданный уровень, соотвествующий определенной степени детонации, электронный блок управления корректирует характеристику работы системы зажигания в сторону уменьшения угла опережения зажигания. Таким образом, достигается оптимальная характеристика работы системы для конкретных условий эксплуатации.

При неисправности датчика детонации (отсутствии сигнала) на панели приборов загорается соответствующая сигнальная лампа, двигатель при этом продолжает работать.

Читайте также:  Не работает один стеклоподъемник ваз 2110

Датчик кислорода

Кислородный датчик (другие названия — лямбда-зонд, датчик концентрации кислорода) служит для определения количества кислорода в отработавших газах.

Для обеспечения эффективной (экономичной и экологичной) работы двигателя внутреннего сгорания соотношение воздуха и топлива в топливно-воздушной смеси должно быть постоянным на всех режимах работы. Это достигается использованием кислородного датчика в выпускной системе. Сам процесс управления содержанием кислорода в выхлопных газах называется лямбда-регулирование.

Так, при недостатке воздуха в топливно-воздушной смеси, углеводороды и угарный газ полностью не окисляются. С другой стороны, при избытке воздуха оксиды азота полностью не разлагаются на азот и кислород.

Лямбда-зонд устанавливается в выпускной системе. На отдельных моделях автомобилей применяется два кислородных датчика: один устанавливается до каталитического нейтрализатора, другой – после. Применение двух кислородных датчиков усиливает контроль за составом отработавших газов и обеспечивает эффективную работу нейтрализатора.

В зависимости от конструкции различают два вида кислородных датчиков: двухточечный и широкополосный.

Двухточечный датчик устанавливается как перед нейтрализатором, так и за ним. Датчик фиксирует коэффициент избытка воздуха в топливно-воздушной смеси (λ) по величине концентрации кислорода в отработавших газах.

Двухточечный датчик представляет собой керамический элемент, имеющий двухсторннее покрытие из диоксида циркония. Измерение осуществляется электрохимическим способом. Электрод одной стороной контактирует с выхлопными газами, друго — с атмосферой.

Принцип действия двухточечного кислородного датчика основан на измерении содержания кислорода в отработавших газах и атмосфере. При разной концентрации кислорода в отработавших газах и атмосфере на концах электрода создается напряжение. Чем выше содержание кислорода (обедненная топливно-воздушная смесь), тем ниже напряжение, чем ниже содержание кислорода (обогащенная топливно-воздушная смесь), тем выше напряжение.

Электрический сигнал от кислородного датчика поступает в электронный блок управления системы управления двигателем. В зависимости от величины сигнала блок управления воздействуют на исполнительные органы подконтрольных ему систем автомобиля.

Широкополосный датчик представляет собой современную конструкцию лямбда-зонда. Он применяется в качестве входного датчика каталитического нейтрализатора. В широкополосном датчике значение "лямбда" определяется с использованием силы тока закачивания.

В отличие от двухточечного датчика широкополосный датчик состоит из двух керамических элементов — двухточечного и закачивающего. Под закачиванием понимается физический процесс, при котором кислород из отработавших газов проходит через закачивающий элемент под воздействием определенной силы тока.

Принцип работы широкополосного датчика основан на поддержании постоянного напряжения (450 мВ) между электродами двухточечного элемента за счет изменения силы тока закачивания.

Снижение концентрации кислорода в отработавших газах (обогащенная топливно-воздушная смесь) сопровождается ростом напряжения между электродами двухточечного керамического элемента. Сигнал от элемента подается в электронный блок управления, на основании которого создается ток, определенной силы, на закачивающем элементе.

Ток, в свою очередь, обеспечивает закачку в измерительный зазор и напряжение достигает нормативного значения. Величина силы тока при этом является мерой концентрации кислорода в отработавших газах. Она анализируется электронным блоком управления и преобразуется в управляющие воздействия на исполнительные устройства системы впрыска.

При обеднении топливно-воздушной смеси работа широкополосного датчика осуществляется аналогичным образом. Отличие состоит в том, что под действием тока происходит выкачивание кислорода из измерительного зазора наружу.

Эффективная работа кислородного датчика осуществляется при температуре 300°С. Для скорейшего достижения рабочей температуры лямбда-зонд оборудуется нагревателем.

Датчик скорости

Датчик скорости предназначен для информирования электронного блока управления о скорости движения автомобиля. Кроме этого, на него возложена также информационная функция – показания спидометра на панели управления.

Режимы работы двигателя, которые связанные с отсеканием подачи топлива в случае закрывания дроссельной заслонки, когда автомобиль находится в движении, а также плавность перехода двигателя на режим холостого хода, зависят от оборотов двигателя и скорости движения. Блок управления, получив необходимые импульсы, подстраивает или меняет параметры режимов работы двигателя. Поэтому, при движении автомобиля на высокой скорости холостые обороты поддерживаются чуть выше, чем при движении на малой скорости или на стоящем авто.

Датчик скорости монтируется на корпусе коробки переключения передач.

Принцип работы достаточно простой и основан на эффекте Холла. Во время движения автомобиля от датчика к электронному блоку управления передаются импульсы напряжения, частота которых прямо пропорциональна скорости вращения ведущих колес автомобиля. Задача устройства сгенерировать определенное количество частотных импульсов за один оборот колеса автомобиля. Эти импульсы являются своего рода частотным сигналом контроллеру для проведения необходимых расчетов. Каждый автомобиль при проектировании рассчитывается на колеса определенных размеров. Поэтому, в случае установки на машину колес другого не предусмотренного изготовителем типоразмера, скоростные показания автомобиля могут несколько измениться.

Датчик скорости за каждый пройденный километр генерирует приблизительно 6004 импульса. Контроллер по временным интервалам между импульсами определяет скорость движения автомобиля. Данные о скорости движения после вычисления отображаются также на спидометре в удобной для водителя форме.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector